Pharmacotherapy for Allergic Rhinitis

John H. Krouse, MD, PhD, MBA
Professor and Chairman
Department of Otolaryngology-HNS
Temple University School of Medicine

Learning Objectives

- Describe the basic mechanism of action for different types of allergy medications
- Discuss the available options for allergic rhinitis therapy
- Summarize a basic treatment strategy for allergic rhinitis

Management of Allergic Rhinitis

- Environmental control
- Pharmacotherapy
- Immunotherapy

Pharmacotherapy for Allergic Rhinitis

The selection of pharmacotherapy for a patient depends on multiple factors:

- Symptom profile
- Cost/availability
- Patient compliance/ease of administration
- Response to previous treatment
- Pathophysiology of disease
- Associated medical conditions
- Side effect profile

What’s Available?

- Targeted therapy
 - Decongestants
 - Mucolytics
 - Antihistamines
 - Anti-cholinergics
 - Anti-leukotrienes
 - Mast-cell stabilizers
- Immnomodulation
 - Steroids
 - Systemic
 - Topical
 - Immunotherapy
 - Monoclonal Abs
 - Anti-IgE
 - Anti-IL

Disclosures:

- None
Topical Decongestants

- Oxymetazoline, phenylephrine
- May be superior to INS for nasal congestion
- Local stinging or burning, sneezing, dryness
- Prolonged use not recommended

Wallace DV. JACI 2008;122:S1-84

Topical Decongestants

- Sympathomimetic Agonist for α1 and α2 receptors, resulting in vasoconstriction
- Onset of action: 5 min
- Duration: > 6h
- Local potency greater than with systemic
- Risks
 - Tachyphylaxis
 - Rhinitis medicamentosa
 - Little evidence of adverse effects if used only 3–7 days

Oral Decongestants

- Pseudoephedrine, Phenylephrine
- Effective at relieving nasal congestion
- Side effects = insomnia, irritability, palpitations
- Phenylephrine appears less effective than pseudoephedrine
- Use with caution in patients with hypertension, bladder neck obstruction, closed angle glaucoma, hyperthyroidism, cerebrovascular or cardiovascular disease
- Use in infants and young children has been associated with agitated psychosis, ataxia, hallucinations, death. Therefore use in children under 6 with caution.

Wallace DV. JACI 2008;122:S1-84

Oral Decongestants

- Choices
 - Pseudoephedrine
 - Phenylephrine
 - Stimulate α1 & β receptors
 - Pharmacokinetics
 - Peak levels: 1–3 h
 - T1/2: 3–4 h
 - Urinary clearance
 - Risks
 - HTN, ASCAD
 - Glaucoma
 - Hyperthyroidism
 - MAO inhibitors
 - Urinary retention
 - Stroke

Mucolytics

- Mechanism of action
 - Increases parasympathetic tone
 - Decreases viscosity
 - Increases volume
 - Guaifenesin acts as an emetic
 - Vagal stimulation
 - Little objective evidence of efficacy in AR
 - Must treat at maximal dose for potential efficacy
 - 2400 mg/day

Antihistamine: Effect of Histamine

- H1 Receptors
 - Early phase Reaction
 - Sneezing
 - Rhinorrhea
 - Congestion
 - Late phase Reaction
 - EOS recruitment
 - Cell adhesion
 - Leukotrienes
 - Late Phase Reaction

Vasodilation (Congestion)
Trigeminal Irritation (Sneeze)
Vascular Permeability (Rhinorrhea)
Oral Antihistamines

- **Fexofenadine, cetirizine, levocetirizine, desloratadine, loratadine**
- Can be used for episodic symptoms
- Effective for control of rhinorrhea, sneeze, and itch
- Often the first line treatment for allergic rhinitis
- Little effect on nasal congestion

Rhinitis Practice Parameter. JACI 2008;122:S1-84

Oral Antihistamines

- Less effective than INS; equivalent to INS for ocular symptoms
- Generally ineffective for non-allergic rhinitis; therefore other options better for mixed rhinitis
- Among the 2nd gen agents, no one agent has conclusively demonstrated superior efficacy

Rhinitis Practice Parameter. JACI 2008;122:S1-84

Oral Antihistamines

- 2nd generation antihistamines preferred over 1st generation agents because less:
 - sedation
 - performance impairment
 - anticholinergic effects
- Less effective for nasal congestion than other options

Rhinitis Practice Parameter. JACI 2008;122:S1-84

Antihistamines: Cognitive Effects

- Antagonism of central H1 receptors affect cognitive skills
 - Sedation
 - Decreased cognitive performance
 - Motor coordination
 - Central interpretation of vestibular input
 - Adverse effect on intellectual and motor performance and may occur in absence of subjective awareness by patient

Oral Antihistamines: Cognitive Effects

- 1st Generation
 - Chlorpheniramine
 - Clemastine
 - Diphenhydramine
 - Hydroxyzine
 - Promethazine
- 2nd Generation
 - Acrivastine
 - Bilastine
 - Cetirizine
 - Desloratadine
 - Ebastine
 - Fexofenadine
 - Levocetirizine
 - Loratadine

Clin Exp Allergy 2000;30:891-916
Topical Intranasal Antihistamines

- **Azelastine**
 - Age 5 and older
 - Also indicated in non-allergic rhinitis

- **Olopatadine**
 - Age 6 and older
 - Onset of action on-label = 30 minutes

Azelastine nasal spray in Fexofenadine failures

Topical Intranasal Antihistamines

- Azelastine, Olopatadine
- Efficacy ≥ oral 2nd generation antihistamines
- Efficacy for congestion symptoms
- Combination with intranasal corticosteroid shows added benefit

Rhinitis Practice Parameter. *JACI* 2008;122:S1-84

Topical Intranasal Antihistamines

- Rapid onset of action = episodic or PRN use
- Efficacy compared to INS not established similar over short term
- Appropriate option for mixed rhinitis
- Bitter taste and/or sedation

Rhinitis Practice Parameter. *JACI* 2008;122:S1-84

Azelastine vs. Cetirizine for SAR

- Multi-center RDBPCT, 2 week treatment period
- Improvement in TNSS was significantly greater with azelastine nasal spray compared with cetirizine (29.3% vs 23.0% improvement, respectively; P =0.015).
- RQLQ score was significantly improved with azelastine nasal spray compared with cetirizine (P =0.049).

Intranasal Antihistamines

Olopatadine vs. Fluticasone

Anticholinergics

- Ipratropium bromide
 - Decreases parasympathetic tone
 - Decreases watery rhinorrhea
 - Does not reduce:
 - Congestion
 - Irritation
 - Itching
 - Sneezing
 - 0.03% and 0.06% strengths

Anticholinergics

- Anti-cholinergic side effects
 - Use with caution in patients with narrow angle glaucoma, prostatic hyperplasia, bladder neck obstruction

Leukotrienes

- First identified in the 1930’s
 - Known collectively as slow reacting substances of anaphylaxis (SRS-A)

 - Inflammatory mediators produced locally by:
 - Eosinophils
 - Macrophages
 - Basophils
 - Monocytes

Leukotrienes

- Cysteinyl leukotrienes
 - LTC4, LTD4, LTE4
 - Promote inflammatory cell recruitment and activation
 - Enhance the production of cytokines
 - Induce vascular leakage and vasodilation
 - Stimulate mucus secretion
 - Decrease mucociliary clearance

Haberal and Corey. OTO-HNS 2003;129:274-9

Leukotrienes

- LTD4 instillation causes dose dependent increase in nasal mucosal blood flow and nasal airway resistance

- LTD4 topical application increases nasal secretions

- LTD4 is 5000 times more potent than histamine at inducing nasal congestion, has 3-fold greater duration of action

Peters-Golden M, Henerson WR. Annals Allergy Asthma Immunol 2005;94:609-618
Leukotriene Modifiers

- Synthesis Inhibitors (5-lipoxygenase)
 - Zileuton
- Receptor Antagonists (CysLT1 receptor)
 - Montelukast
 - Zafirlukast

Leukotriene Receptor Antagonists

- Effective for SAR and PAR
- Comparable efficacy to antihistamines; use with antihistamines may be additive
- Montelukast approved down to 6 mos.
- Approved for both rhinitis and asthma; May be useful in patients with both conditions

Wallace DV. JACI 2008;122:S1-84

Oral LTRAs vs. Antihistamines

Steroids

- Mechanisms
- Clinical Effect
 - CS enters cell
 - Lipophilicity
 - Binds to steroid receptor
 - Transcription
 - mRNA
 - Translation
 - Protein
- Effect: Downregulate inflammatory responses by binding to intracellular glucocorticoid receptors
 - receptors undergo conformational changes upon activation, enter nucleus
 - bind with glucocorticoid response elements located on anti-inflammatory genes
 - activated genes transcribe messenger RNA for anti-inflammatory proteins
 - activated glucocorticoid receptors suppress the transcription of most cytokine and chemokine genes

AAOA CME ©
Intellectual property of the AAOA; Intended for Course Registrant only; Duplication or use in any form is prohibited without express permission from the AAOA CME Task Force.
Steroids: Mechanisms
- **Effector Cells**
 - Eosinophils
 - Decreased recruitment
 - Decreased immigration
 - Basophils & Masts
 - Decreased
 - Less histamine
- **Director Cells**
 - APCs - decreased
 - T-lymphocytes
 - CD4, CD8, CD25
 - IL-4, IL-5
 - Down-regulation of VCAM-1
 - B-lymphocytes
 - Cytokine expression

Systemic Corticosteroids
- A short course may be appropriate for severe symptoms, especially if nasal polyposis present
- Can be administered parenterally, or injected intranasally
- Recurrent administration of systemic corticosteroids has potential for long term corticosteroid side effects

Intranasal Corticosteroids
- Very effective medications for AR
- Effective for all symptoms of SAR and PAR, including congestion
- Appropriate choice for mixed rhinitis
- Clinical response about equal for all currently available INS
- May benefit ocular allergy symptoms; similar to oral antihistamine

Intranasal Corticosteroids
- More effective than oral antihistamine ± LT antagonist
- Onset of action b/w 3-12 hrs. More effective with continuous use
- Not generally associated with systemic side effects
- Older agents associated with growth suppression in children
- May cause bleeding, irritation, septal perforation

Intranasal Corticosteroids
- Beclomethasone dipropionate
- Budesonide
- Ciclesonide
- Flunisolide
- Fluticasone propionate
- Fluticasone furoate
- Mometasone furoate
- Triamcinolone

In Vitro Inhibition of IL-4
- Indicator of potency of agent
 - Most
 - Fluticasone
 - Mometasone
 - Least
 - Beclomethasone
 - Triamcinolone
 - Intermediate
 - Budesonide

Wallace DV. JACI 2008;122:S1-84
Topical Antihistamine + Topical Steroid

Topical Nasal Steroids: Safety

- Potential adverse effects
 - Intranasal effects
 - Burning
 - Dryness
 - Nosebleeds
 - Possible mechanical complication
 - Septal perforation - rare

- Intranasal effects
 - Burning
 - Dryness
 - Nosebleeds

- Systemic risks
 - Glaucoma or cataracts
 - Bone loss, growth retardation
 - Other systemic corticosteroid risks

- Insufficient data to base estimate of risk

- Reasonable to inform patients that the risks of these outcomes are likely small, although the impact over a lifetime is not yet understood.

Beclomethasone: Pediatric Growth

Skoner Pediatrics 2000;105:E23

Mometasone: Pediatric Growth

Schenkel Pediatrics 2000;105:E22
Safety in Pediatrics

- Multiple studies have demonstrated none or minimal growth suppression with topical nasal steroid use in children, especially with newer agents having lower bioavailability.

Allergic Rhinitis Guidelines

- Pharmacotherapy recommendations:
 - Intranasal antihistamines for improvement in quality of life
 - Strong recommendation
 - Second generation oral antihistamines for sneezing and itching
 - Strong recommendation
 - Intranasal antihistamines for all type of allergic rhinitis
 - Option
 - Oral leukotriene receptor antagonists SHOULD NOT be used for primary treatment
 - Strong recommendation AGAINST
 - Combination therapy for inadequate monotherapy response
 - Option

Pharmacotherapy for Allergic Rhinitis

The selection of pharmacotherapy for a patient depends on multiple factors:

- Symptom profile
- Cost/availability
- Patient compliance/ease of administration
- Response to previous treatment
- Pathophysiology of disease
- Associated medical conditions
- Side effect profile

Thank you